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The phase behaviour in ternary blends consisting of three chemically different homopolymers was analysed 
by the extended version of Flory's equation-of-state theory. To avoid arbitrary adjustment of the 
equation-of-state parameters, polystyrene (PS), poly(vinyl methyl ether) (PVME), poly(2,6-dimethyl-l,4- 
phenylene oxide) (PPE) and polybutadiene (PB) were used as model polymers. Thus, the pure-component 
properties were fixed by this process. The unknown set of binary exchange interaction parameters X~j and 
Qij were obtained either by fitting the theoretical phase diagram to the experimental one using Xij and Qi~ 
as adjustable quantities or from the experimentally known X~ and Qij values. Using these data of X~ and 
Q~j it was found that the calculated binary phase diagrams fit the experimental ones qualitatively well. Up 
to this point the theory has corroborated its validity for two-component systems. Spinodals of three different 
ternary model blends were calculated over a wide temperature range. The first mixture, PS(1)/PVME(2)/ 
PPE(3), consisted of two binary blend combinations with lower critical solution temperature (LCST) and 
one with upper critical solution temperature (UCST) behaviour. In the second example a closed miscibility 
gap was found in the ternary blend despite all binary mixtures being compatible. As a third model mixtures 
of PPE(1)/PS(2)/PB(3) were used. At low temperature a one-phase regime was found at q53 < 0.07. Raising 
the temperature increased the compatibility and finally a LCS T at the PPE(1)/PS(2) side of the composition 
triangle occurred. 
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I N T R O D U C T I O N  

Since the pioneering work of Flory 1, Huggins 2 and 
Stavermann 3, the so-called Flory-Huggins lattice theory 
is still the most common approach to describe the mixing 
properties of polymer solutions and polymer blends. In 
contrast to the early prediction, the Flory-Huggins 
segment interaction parameter Z was found to be 
concentration-dependent 4. Thus, Z was recognized as 
a residual free-energy parameter and was empirically 
expanded as a function of polymer concentration and 
temperature 5'6. With this assumption, polymer solutions 
and polymer blends may be described well. Nevertheless, 
the empirical expansion of Z lacks rigour because the 
coefficients of X do not possess significant physical 
meaning. Additional improvements have been made by 
introducing the concept of interacting segment surfaces  7-9 

and an entropic correction term 1°. One of the major 
disadvantages of the Flory-Huggins model is the assump- 
tion of a rigid lattice and the fact that the liquid-state 
properties are completely neglected. Later on, some of 
these insufficiencies have been improved by introducing 
vacant lattice sites and thus allowing for changes in 
volume upon mixing or by applying temperature or 
pressure 1~-~4. By this mean-field lattice-gas (MFLG) 
formalism an equation of state for polymeric liquid 
mixtures was obtained and the phase behaviour of 
polymer solutions even at high pressures has been 
described 15. 

* To whom correspondence should be addressed 

A different approach was chosen by Prigogine 16. He 
succeeded in the development of the cell theory for r-mers 
or polymers by introducing a new quantity c, which 
describes the number of translational degrees of freedom 
of a segment in a polymeric chain. The parameter c 
considers the reduction of the translational degrees of 
freedom in the chain compared with a small molecule 
which is supposed to consist only of one segment. 
Prigogine pointed out that c should be a measure of the 
internal chain dynamics or the chain flexibility 17. Appli- 
cation of the theorem of corresponding states led to a 
partition function and a reduced equation of state. In 
this context a homopolymer is characterized by four 
molecular constants. These are related to the macroscopic 
properties through the reduced equation of state. The 
main ingredients are the constants r* and e, which reflect 
on the coordinates of the potential minimum. The other 
parameters c and q contribute to the number of transla- 
tional degrees of freedom of a segment in the chain and 
to the structure of the lattice, respectively. As was shown 
by Prigogine, this approach describes the liquid-state 
properties of a homologous series of non-polar molecules 
and their mixtures is. The main restrictions of the 
Prigogine cell theory are the assumption of a regular 
lattice structure, the limitation to mixtures with segments 
of similar size and shape, and the sensitivity of the theory 
to changes in the intermolecular potential. 

Starting from these disadvantages Flory derived a more 
general partition function of polymeric liquids which 
should easily be extendable to mixtures of chemically 
different homopolymers. 
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THEORETICAL 

Flory's equation-of-state theory 
In one dimension a polymer chain may be described 

as a string of beads. The beads are numbered and have 
an incompressible length l*. Only central forces are 
considered. The dynamical system of N beads may 
be described by the Hamiltonian. The configurational 
partition function is straightforwardly obtained and may 
be solved by applying a square-well potential 19. Unfor- 
tunately this model is not exactly solvable in three 
dimensions. Nevertheless, the expansion in three dimen- 
sions succeeds in a formal manner. The incompressible 
length of a bead l* is replaced by v .1/3 and afterwards 
the result is cubed. This step lacks rigour, but seems to 
offer a plausible approximation for three dimensions. 
Owing to the restricted number of translational degrees 
of freedom of a segment in the chain compared with a 
free segment, Flory introduced the parameter C 20 '21 .  

Prigogine originally argued that a completely stiff chain 
exhibits only three translational degrees of freedom and 
thus, if the number N of segments is very large, c 
approaches zero. Consequently c is 2/3 for a flexible 
chain. If the N segments in the polymer behave like N 
monomers, c is unity. According to these considerations 
c reflects the dynamical structure or the flexibility of a 
chain i v. 

A suitable form for the intermolecular potential of non- 
polar or slightly polar liquids was given by Hildebrand 22, 
Scott 23 and Rowlinson 24. They showed that such systems 
are well described by a modified van der Waals potential: 

E o ,., - l ip a (1) 

where a is treated as a constant in the range 1.0-1.5. 
Thus, Flory combined the translational partition function 
of the string-of-beads model with an intermolecular 
potential of the van der Waals type. This potential 
expresses the energy of the system with all elements at 
their equilibrium positions. Finally Flory got a universal 
partition function for a liquid polymer2°'21: 

Z : Z e o m b [ O ( v  1/a -13"1/3)3"] rnc exp(rnsr l /2vkT)  (2) 

where g is an inconsequential geometric factor 25, v is the 
volume and v* the incompressible volume of a segment, 
r is the mean number of segments per molecule, n is the 
total number of molecules and c has the meaning 
explained above. Finally, - s q / 2 v  is the intermolecular 
energy per segment, s being the number of contact sites 
per segment and t/ the energy characteristic of one 
contact. For simplicity it is assumed that the exponent 
a in equation (1) is unity. Introducing the reduced 
parameters: 

vl = vJv* (3a) 

~F i = T J T *  = 2v*ek T/st  1 (3b) 

[~i = Pl/P* = 2pv* 2 /s~l (3c) 

and with the definition of the pressure from statistical 
mechanics one gets from equations (2) and (3) the reduced 
equation of state2°'21: 

~),vi/~Fi=~l/3(~)l/3--l)-l--(~)iTi)-I (4) 

Equation (4) may be applied to a pure polymer liquid. 
So far the theory is for a one-component system; next a 
partition function for a mixture of chemically different 
homopolymers is developed. To avoid complicating 

mixing rules it is assumed that all segments have the same 
incompressible volume: 

. . . .  ( 5 )  

This is, of course, a crude approximation but may be 
reduced by defining artificial segments that exhibit the 
same incompressible volume. Thus, in this context the 
number of segments is not identical with the number of 
repeating chemical subunits in the polymer chain. Deriving 
the equation of state for a multicomponent mixture, an 
additional set of parameters has to be added. The physical 
meaning of these parameters has its analogue in the 
classical Flory-Huggins X parameter: 

N j - 1  

~ (Xi/~)--T~iQij) 
j = 2  i = l  

X u and Qij reflect the exchange enthalpy and entropy, 
respectively 26. It is obvious that the overall exchange 
interaction energy is temperature-dependent due to the 
exchange entropy term. Also a slight concentration 
dependence enters as the volume of mixing ~ changes 
with composition. One might argue that the agreement 
with experimental data could be improved by introducing 
an additional concentration dependence of Xi~ or Qij. 
Nevertheless, this process requires an additional para- 
meter and thus we refrain from this further complication. 
Also, only binary interactions are considered. Resulting 
from the definition: 

Xi j  = S i Arhj/2v .2 (6) 

with 

Arlij : (flu + qjj)/2- % (7) 

it has to be emphasized that the Xu's are not invariant 
against exchange of the indices i and j (X i j~Xj i ) .  Here 
q,, qjj and % are the constant energy characteristics of the 
corresponding intermolecular homo- and heterocontacts. 
The characteristic pressure of the mixture is defined as: 

N N j - 1  

p*= Y_, Y_, Y_.  iojxij (8) 
i = l  j = 2  i=1 

and the reduced temperature: 

T =  T / T * = ( 1 / p * ) (  ~= 1 P*7"iq~,) (9) 

With equations (8) and (9) the mixture equation of state 
is obtained: 

~17"=~113(v 1t3 - 1)- 1 _ (~¥)- 1 (10) 

As p and ~ are known from the pure-component 
properties, equations (8) and (9), ~ may be calculated 
from equation (10). 

The free energy of the N-component mixture is 
straightforwardly obtained by the standard equation of 
statistical thermodynamics: 

AF m = -- k TIn Z Zi (11 ) 
i= 

Considering every term in the partition function one 
obtains the generalized Helmholtz free energy for a 
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multicomponent mixture: 
N 

AFm/N,kT= ~ (~)i/ri) In ~b i 
i=1  

N 
+3 ~ c~i(ci-c)lnE(27zmikT)1/2/h] 

i=1  

N 
+ 3 ~ c,c~, ln[(~/3 - 1 ) / ( 0 1 / 3  - -  1)'] 

i=1  

+ (v*/kT) (a,p*(1/f~,- 1/5) 
i 

+ c~O~(X~/~- T~iQu) 
j = 2  i=1  

(12) 

Some additional definitions have to be given. The mean 
number of translational degrees of freedom for a segment 
in the mixture is: 

N 

c= ~" q~ici (13) 
i = l  

where c~-pi v~/kT~. The surface fraction 0 i is: 

Oi = (si/s)dpi (14) 

where s~ is the surface area of a segment i and s the total 
surface area in the mixture: 

N 
s =  s,¢, (15) 

i = l  

The equation-of-state parameters of the pure homo- 
polymers may be obtained from the experimental thermal 
expansion coefficients ~i and the thermal pressure co- 
efficients y~. Suitable derivation of the equation of state 
in the zero-pressure limit leads to 2°'21" 

= [~iT/(3~T+ 3)+ 1] 3 (16) 

"Fi = ~1/3 _ _  1/~3/4  (17) 

p* = ~,T~ z (18) 

The mixture equation-of-state parameters may be calcu- 
lated from equations (8)-(10), (13) and (15). Thus, there 
remain the exchange enthalpy and entropy parameters X u 
and Qu, which are the only unknown terms characterizing 
the mixture. 

It is obvious from equation (12) that besides the 
combinatorial entropy the Helmholtz free energy of 
mixing is controlled by differences in the equation-of- 
state parameters of the pure components and the mixture, 
namely (~i-~), (c i -c)  and (p*-p*) ,  and by the binary 
exchange energy parameters X u and Qu- If the differences 
in the equation-of-state properties vanish, only the first 
and last terms in equation (12) remain, and this strongly 
resembles the classical Flory-Huggins approach. 

In the present form equation (12) is valid for a 
multicomponent mixture of monodisperse polymers. 
Polydispersity effects may be considered by replacing the 
mean degree of segments of a polymer chain by a suitable 
molecular-weight distribution function. Despite this, 
another problem arises when calculating phase diagrams 
of polymer mixtures with very broad molecular-weight 
distribution. In principle one has also to discuss the 
molecular-weight dependence of the equation-of-state 
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parameters such as the thermal expansion coefficient 
and the isothermal compressibility change in the low- 
molecular-weight limit. On the other hand these experi- 
mental molecular-weight dependences are usually not 
known. Thus, we drop the introduction of a molecular- 
weight distribution function in equation (12) and in 
this way avoid problems due to the molecular-weight 
dependence of the equation-of-state parameters. 

Thermodynamic stability conditions for two- and 
three-component mixtures 27 

The stability condition for a binary mixture may be 
written in terms of the Helmholtz free energy at constant 
temperature and pressure: 

(~2G/a¢~)v,p = (~2F/a¢~,)T. V 

"3 t- ( ~ 2 F / ~ )  1 ~V)T(~V/~D1)T,p-~-O (19) 

In a three-component mixture one has to consider two 
independent concentration variables (~1 and q~2 (conse- 
quently ~b 3 = 1 - q ~ l -  q~:). Thus, the stability conditions 
at constant temperature and pressure become: 

82G/8~b~ 82G/a~pl a~b2 >4) (20a) 

and 

> 0 (20b) 

Solutions of equations (20a) and (20b) are obtained by 
inserting equation (12) and making the appropriate 
derivatives according to equation (19). The resulting 
expressions are quite lengthy and therefore omitted (the 
full equations are given as supplementary material). 
Equation (20) may not be solved analytically but 
numerical solution succeeds with a computer iteration 
procedure. 

RESULTS AND DISCUSSION 

In terms of Flory's equation-of-state (EOS) theory each 
polymer i is characterized by the three quantities p*, v* 
and T*, the number of translational degrees of freedom 
ci of a segment and the segment surface area sv To refrain 
from arbitrary adjustment of these quantities, the proper- 
ties of the model compounds are taken from experi- 
mentally well known polymers. We have chosen poly- 
styrene (PS) 28, poly(vinyl methyl ether) (PVME) 29,3°, 
poly(2,6-dimethyl-l,4-phenylene oxide) (PPE) 31 and 
polybutadiene (PB) 32. Thus the pure-polymer character- 
istics p*, v*, T* and ci are fixed by the experimental 
thermal expansion and isothermal pressure coefficients. 
The segmental surfaces were calculated using Bondi's 
group contribution method 33. Finally, the set of binary 
interaction parameters X u and Qu remain to be estab- 
lished. This process gives some advantages in doing 
model calculations, which should also be physically 
relevant for real systems. 

First, the equation-of-state parameters, or in other 
words the thermal expansion coefficients and the thermal 
pressure coefficients, of these polymers are fairly well 
known. Secondly, information is available on the binary 
exchange interaction parameters X o and Qu either from 
measurements or from known binary phase diagrams. 
Thirdly, it may be assumed that these systems do not 
exhibit strong polar, specific interactions. Only in the 
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Table 1 Specific volumes v~ at 298 K, thermal expansion coefficients 
~ and characteristic pressures p* of the polymers used in the model 
calculations 

Polymer i V i (cm3g -t ) c£ (K -1) p* (Jcm -3) 

PolystyrenC (PS) 0.934 5.80 x 10 -4 480 
Poly(vinyl methyl 

ether) b (PVME) 0.950 6.73 x 10 -4 420 
Poly(2,6-dimethyl-l,4- 

phenylene oxide) c (PPE) 0.930 7.23 × 10 -4 540 
Polybutadiene d (PB) 1.176 7.00 x 10 -4 420 

°Ref. 23; b refs. 24, 25; Cref. 26; a' r e f .  27 

3(PPE) 
e/Q _ 

7 
1 (PSI' LCST 11300C1 ' 2(PVME) 

Figure 1 Binary blend phase behaviour calculated by Flory's equation- 
of-state (EOS) theory for the systems PS(1)/PVME(2), PS(1)/PPE(3) 
and PVME(2)/PPE(3). The EOS parameters are given in Table 1. The 
binary interaction parameters are given in Table 2 

absence of such interactions is a van der Waals type 
potential justified 15,16. 

In Table 1 the basic ingredients and the corresponding 
equation-of-state properties of the present model calcu- 
lations are given. As a first example the equation-of-state 
parameters  of PS, PVME and P P E  have been chosen. 
In principle this ternary mixture consists of three binary 
combinations. PS /PVME 34'35 and PS /PPE 36-3a exhibit 
lower critical solution temperature (LCST)  behaviour 
whereas P V M E / P P E  is not compatible to a considerable 
extent at room temperature 39. Thus a positive heat of 
mixing and upper critical solution temperature (UCST)  
behaviour is supposed. In Figure 1 the results of the 
experimental and theoretical analyses of these binary 
combinations are summarized. The interaction para- 
meters X u and Qu, the segment volume ratios sJsj, and 
the mean number  of segments per molecule are given in 
Table 2. The values of X u and Qu of PS /PVME and 
PS/PPE have been obtained from the literature 3°'36'4°. 
The LCST's  of PS /PVME 34'35 and PS/PPE 36-3a are 
130°C and 350°C, in agreement with experimental work. 
Detailed comparison of the calculated phase diagrams 
and the mentioned literature data 34-38'~° showed good 
agreement in both the position of the L C S T  and the 
shape of the phase diagrams as well. For  the incompatible 
P V M E / P P E  system 39 n6 literature data are available at 
the present time and thus small positive X u and Qu (see 
Table 2) were used and an UCST of about  300°C was 
calculated. It has to be emphasized that a slight variation 
of X u and Qu does not change the general features of 
the phase diagrams though the spinodals are shifted along 
the temperature axis. By this procedure all parameters 
are fixed in a suitable way and exhibit values close 
to physical reality. As pointed out by Flory and co- 
workers 2°'21 and later on by McMaster  2s the mixing 
behaviour of polymers is ruled by both the intermolecular 
interaction energy and the pure-component  equation-of- 
state properties. In this context polymers that differ in 
their thermal expansion coefficients and isothermal 

compressibilities may not be expected to be miscible 
despite the fact that their blends exhibit a negative 
enthalpy of mixing. In the latter systems, LCST's  are 
predicted due to the differences in the equation-of-state 
terms and the decreasing interaction enthalpy with rising 
temperature. Also, as argued above, polymers do not mix 
if they exhibit very different chain flexibilities. Not  only 
the decreasing combinatorial  entropy of mixing but also 
the ( c i - c )  term in equation (2) will reduce the trend to 
build up a stable one-phase system. In contrast to these 
findings, the Flory-Huggins  approach does not describe 
the compatibility of polymers in terms of specific pure- 
component  properties. 

The spinodals of the system introduced above were 
obtained by inserting the set of parameters in equation 
(12) and taking the appropriate derivatives in equation 
(20) with respect to equation (19). Finally, the stability 
conditions may be fulfilled by solving the matrix equation 
(20a) and finding the solutions of equation (20a) by 
variation of the volume fractions q~l and (D2 at constant 
pressure and temperature. Additionally, equation (20b) 
has to be fulfilled. Figure 2 shows a set of spinodals at 
six different temperatures where the EOS parameters are 
taken from PS (1), PVME (2) and PPE  (3). The exchange 
interaction parameters are listed in Table 2. As shown 
by Figure 1 and comparison with the literature 3*-as'4° 
the presented exchange interaction parameters describe 
the binary phase behaviour well as far as the experimental 
data are available. 

Table 2 Binary exchange interaction parameters X u and Qu, segment 
surface ratios sJsj, and mean number of segments per molecule r~ of 
the polymers used in the first ternary model blend 

Parameter PS(1)fPVME(2) PS(1)/PPE(3) PVME(2)/PPE(3) 

X u (J cm - 3) - 2.0 a - 5.7 b 2.0 
Qij (Jdeg- x cm-3) _0.00277 a -0.00277 ~ 0.00277 
s~/sj 1.56 0.75 0.48 
r i 400 400 400 

= Experimental data from refs. 30, 40 
b Experimental data from refs. 36, 37, 40 

(f) 
2 1 

~ ~  (e) 

~ " ~ " ~ . . . . . . .  {d} 

(c} 

(hi 

1 2 (¢3) 

Figure 2 Ternary blend phase behaviour calculated by Flory's 
equation-of-state (EOS) theory. The EOS parameters are taken from 
PS (1), PVME (2) and PPE (3). The binary interaction parameters 
used in this model are given in Table 2. (a) T= 100°C; (b) T=220°C; 
(c) T=300°C; (d) T=400°C; (e) T=500°C; (f) T=600°C 
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500 

¢00 

"-- 300 

200 

1 O0 
0 0.5 1 

~13(0.2/0.8) 

Figure 3 Concentra t ion- temperature  phase diagram of  the system 
shown in Figure 2. The blend ratio ~bl/~b3 is taken constant  at 
~bl/~b 3 =0.25, and the concentrations of the homopolymer  ~b z and of 
the blend ~b 13 are varied (~b 2 + ~b 13 = 1) 

Table 3 Binary exchange interaction parameters X u and Qu, segment 
surface ratios sJs~, and mean  number  of segments per molecule q of 
the polymers used in the second ternary model blend 

Parameter PS(1)/PVME(2) PS(1)/PPE(3) PVME(2)/PPE(3) 

X u (J cm - ~) - 2 . 0  a - 5.7 b - 3.5 
Qu (J deg-  1 cm-3)  _0.00277 a -0 .00277  b -0 .00277  
si/s ~ 1.56 0.75 0.48 
r i 400 400 400 

a Experimental data from refs. 30, 40 
b Experimental data from refs. 36, 37, 40 

negative interaction parameters Xz3 and Q23- The 
exchange parameters of this model are listed in Table 3 
and the resulting analysis of the binary mixtures is given 
in Figure 4. All binary systems depict LCST behaviour, 
blend PS(1)/PVME(2) at 130°C, blend PS(1)/PPE(3) at 
350°C, and blend PVME(2)/PPE(3) at 250°C, respectively. 
Again the spinodals of the ternary mixture were calculated 
by inserting the appropriate set of parameters in equation 
(12) and solving the matrix of second derivatives of the 
Gibbs free energy with respect to the concentration, 
equation (20), by numerical iteration. In Figure 5 six 
spinodals in the region between 0 and 400°C are given. 
Surprisingly, a closed miscibility gap at intermediate 
concentrations of the three components is established, 
despite the fact that all binary mixtures are compatible. 
With rising temperature the miscibility gap extends 
towards higher volume fractions ~b2. This decreasing 
compatibility at high temperatures may be explained due 
to the LCST behaviour of the binary blends. At low ~)2 
values the phase diagram does not change significantly. 
Even at 400°C (Figure 5f) the ternary mixture remains 
homogeneous for q52 < 0.1. The asymmetry of the phase 
diagrams in Figure 5 may be realized by generating 
composition temperature phase diagrams for various, 
but constant, blend ratios q~l/q~3 and variation of q52. 
Figure 6 depicts three diagrams where the ratio q~l/q~3 = 
~b13 is kept constant at 0.25, 1 and 4, respectively, and 
the blend composition q~2 and q513 is varied. At a small 
blend ratio qS1/~b 3 =0.25 one finds a pronounced phase- 

At low temperatures (Figure 2a) a one-phase region is 
observed at small volume fractions ~b 2 (~b 2 <0.05). This 
behaviour is not surprising. Because of the positive X23, 
component 2 may be thought of as a non-solvent for 
component 3. Thus, subsequently adding an incompatible 
polymer to the compatible blend PS(1)/PPE(3) causes a 
demixing of the single-phase regime. Raising the tempera- 
ture increases the stable one-phase region. This may be 
explained by the UCST behaviour of the component 2/ 
component 3 blend, which exhibits an UCST at about 
300°C (see Figure 1). Therefore, raising the temperature 
decreases the incompatibility of PVME(2)/PPE(3) and a 
closed miscibility gap is emerging (Figures 2c and 2d). 
Further increase of temperature results in a completely 
miscible three-component one-phase system (Figure 2e) 
and finally, from the PS(1)/PVME(2) side of the 
composition triangle, a miscibility gap caused by LCST 
behaviour is developing (Figure 2f). 

These apparently complicated features may be clearly 
seen in a somewhat different representation. Figure 3 
shows a conventional concentration-temperature phase 
diagram, where at constant blend ratio of ~b I and q~3 
(~bl/~b 3 = 0.25) the volume fractions of the blend, ~b 13, and 
of component 2, ~b 2, are varied. Note that ~bz+q~13 = 1. 
From Figure 3 it is obvious that at low temperature the 
phase behaviour is controlled by the UCST behaviour 
of PVME(2)/PPE(3) whereas at higher temperature the 
LCST behaviour of PS(1)/PVME(2) is dominant. With 
a suitable choice of the exchange interaction parameters 
(as in the present case) a completely miscible ternary 
polymer blend may be established (Figure 2e). 

Another interesting ternary blend is that where none 
of the binary mixtures shows a miscibility gap. This 
artificial system may be modelled by using again the EOS 
parameters of PS (1), PVME (2) and PPE (3), now 
assuming that the blend PVME(2)/PPE(3) exhibits 

3 (PPE) 

o~'~d'o,,r," 

LCST( 130°C1 

Figure 4 Binary blend phase behaviour calculated by Flory's equation- 
of-state (EOS) theory for the same system shown in Figure I.  Note 
that now PVME(2)/PPE(3) is assumed to exhibit LCST behaviour. 
The interaction parameters are given in Table 3 

3 

1 2 (f) 

(e) 

(d) 

(C) 

~ - . . . . _ , ~  (b) 

Figure 5 Ternary blend phase behaviour calculated by Flory's 
equation-of-state (EOS) theory. The EOS parameters are taken from 
PS (1), PVME (2) and PPE (3). The binary interaction parameters 
used in this model are given in Table 3. (a)T=0°C; (b) T= 100°C; (c) 
T= 150°C; (d) T=200°C: (e) T=300°C; (f) T=400~'C 
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Figure 6 Concentration-temperature phase diagrams of the model blend shown in Figure 5. The blend 
ratio ~b 1/~ba was kept constant, and the homopolymer concentration ~b 2 and blend concentration ~bl~ were 
varied. (a) ~bl/~ba =0.25; (b) q~l/~b3 = 1; (c) ~b:/q~3=4 

separated regime at low temperature which is extending 
with rising temperature (Figure 6a). In contrast, at a 
high blending ratio tkl/~b3 = 4  mixtures of component 2 
(PVME) and the blend PS(1)/PPE(3) are compatible up 
to 280°C (Figure 6c). 

The surprising fact that none of the three binary 
mixtures shows a miscibility gap and yet some of the 
ternary mixtures are unstable (see Figure 5) may be 
explained in the following way. If two polymers are only 
slightly compatible, say components 1 and 2, the addition 
of a third component (3) can decrease the solvent power 
of component 1 for component 2. Thus, components 1 
and 2 are no longer completely miscible. This should 
always arise if the affinity of component 1 for component 
3 is much greater than for component 2, as in the present 
case ([Xx2[ << [Xxa[). One would not expect such behaviour 
if X12, X13 and X23 exhibit the same order of magnitude. 

Such a case where all binary mixtures are compatible 
but the ternary system shows a closed miscibility gap is 
known in the literature. Groeninckx et al. 4x presented 
results of the mixture polycaprolactone/poly(styrene- 
co-acrylonitrile)/poly(styrene-co-maleic acid anhydride) 
where all binary combinations are compatible up to more 
than 200°C. Nevertheless, the ternary mixtures exhibit a 
widespread phase-separated region at low temperatures. 
Another example is given by Robard and Patterson 42. 
They investigated ternary mixtures of polystyrene/poly- 
(vinyl methyl ether)/chloroform. Although chloroform is 
a good solvent for both PS and PVME, PS and PVME 
are compatible too, and the ternary mixtures possess a 
pronounced closed miscibility gap in the intermediate 
concentration region. This observation was explained by 
the stronger solvent power for PVME than for PS. 

In the next section a third example will be given where 
two of the binary mixtures show UCST and one shows 
LCST behaviour. The EOS parameters are taken from 
PPE (1), PS (2) and PB (3). PPE(1)/PS(2) is a well known 
blend with a L C S T  36-38'4° whereas for oligomeric PS(2)/ 
PB(3) mixtures UCST behaviour is established a3. Infor- 
mation about the magnitude of the exchange interaction 
parameters X u and Qi" of both systems was provided 
either by experiments ~6 or by fitting the theoretical 
spinodals from the EOS theory to the experimental phase 
diagrams and using X 0 and Qu as adjustable parameters. 
Results are listed in Table 4. Spinodals calculated by this 
procedure are in good agreement with the experimental 
ones 32'37'40'43. Concerning the mixture PPE(1)/PB(3), 
to the authors'  knowledge no detailed analysis of the 
phase behaviour has been published. From preliminary 

Table 4 Binary exchange interaction parameters X o and Qu, segment 
surface ratios sJsj, and mean number of segments per molecule r~ of 
the polymers used in the third ternary model blend 

Parameter PPE(1)/PS(2) PPE(1)/PB(3) PS(2)/PB(3) 

X u (Jcm -3) -5.7 = +7.0 b +7.1Y 
Qu(Jdeg-acm -3) -0.00277" +0.0065 b +0.0065 ~ 
sl/sj 1.34 1.98 1.48 
r i 400 400 400 

"Experimental data from refs. 36, 37, 40 
b Numbers of X u and Qu have been adjusted corresponding to the 

incompatible blend PS(2)/PB(3) 
c Experimental data from ref. 32 

3(PB) 

7 
1 (PPE] LCST 1350%1 2(PS) 

Figure 7 Binary blend phase behaviour calculated by Flory's equation- 
of-state (EOS) theory for the systems PPE(1)/PS(2), PPE(1)/PB(3) and 
PS(2)/PB(3). The EOS parameters are given in Table 1, and the binary 
interaction parameters are taken from Table 4 

differential scanning calorimetry experiments the incom- 
patibility of PPE/PB at ambient temperature is estab- 
lished 39. Thus, blend PPE(1)/PB(3) is supposed to 
possess an UCST and as a rough approximation the 
same interaction parameters as for PS(2)/PB(3) are 
assumed (see Table 4). The binary mixing behaviour is 
summarized in Figure 7. 

Figure 8 shows six spinodals of the system described 
above at various temperatures. At room temperature 
(Figure 8a) only ternary blends with 4) 3 <0.07 build up 
a thermodynamically stable one-phase region. At 300°C 
all blends with ~ba(PB ) < 0.2 are compatible (Figure 8c). 
The enlargement of the one-phase regime is explained by 
the decreasing incompatibility of PPE(1)/PB(3) and 
PS(2)/PB(3) with rising temperature (UCST behaviour). 
If the temperature is further increased, the system 
becomes completely miscible (Figure 8e). Finally, a 
high-temperature phase separation (LCST) occurs at 
the PPE(1)/PS(2) side of the composition triangle. One 
has to remember at this point that the binary blend 
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Figure 8 Ternary blend phase behaviour calculated by Flory's 
equation-of-state (EOS) theory. The EOS parameters are taken from 
PPE (1), PS (2) and PB (3) listed in Table 1. The binary interaction 
parameters are taken from Table 4. (a) T=0°C; (b) T=200°C; (c) 
T=300°C; (d) T=400°C; (e) T=500°C; (f) T=600°C 

PPE(1)/PS(2) demixes at 350°C whereas, in the ternary 
blend, PPE(1 )/PS(2) is still mixed at 500°C. The physical 
explanation for this is as follows: if one adds to a 
compatible blend, say component 1/component 2, a 
polymer, component 3, which is incompatible with both 
at low temperature but is compatible at high temperature, 
the LCST of the component 1/component 2 blend may be 
shifted towards higher values of T. Another represen- 
tation of this behaviour is given in Figure 9. The blend 
ratio of component 1 and component 2 is kept constant 
(~bl/~b2 = 1) and now the concentration of the blend 4h2 
and of the other component ~b 3 is varied. This corresponds 
to a mixture of a block copolymer, 1-co-2 (PPE-co-PS), 
with equal block length and a homopolymer 3 (PB). Of 
course, this way of looking at the problem neglects the 
configurational consequences of the fact that polymers 1 
and 2 are tied together. But all features of the phase 
diagram (in Figure 8) can clearly be seen now (Figure 
9). First, at low temperature only mixtures with small 
q53 are compatible; secondly, the compatibility increases 
with rising temperature; and thirdly, the LCST of the 
component 1/component 2 blend is shifted towards 
higher temperature. 

Concluding, it is emphasized that the prediction of the 
phase behaviour of binary polymer blends by Flory's 
equation-of-state theory is well established in the literature. 
The compatibility may be discussed in terms of the 
equation-of-state properties and of the binary exchange 
interaction parameters X u and Qu" Knowledge of these 
experimental quantities enables the calculation of the 
phase diagram and comparison with experiments. Con- 
cerning the three-component systems, to the authors' 
knowledge a detailed analysis of a ternary blend of three 
different homopolymers where both X u and Qu and the 
equation-of-state parameters are known has not yet been 
published. Thus, at this time a detailed comparison with 
experimental data on ternary systems has to be omitted. 
Nevertheless, a model calculation based on a well 
established theoretical background may be fruitful in 
finding more compatible ternary blends and in under- 
standing the mixing behaviour in terms of physically 
relevant and experimentally accessible parameters. 

600 

500 
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300 
...,,. 

i - -  

200 

100' 

0' 
0 0.5 1 

$12 (0.5/0.5) 

Figure 9 Concentration-temperature phase diagram of the blend 
shown in Figure 8. The blend ratio ~bl/q~ 2 was kept constant at 
~1/~b2 = 1. The concentration of the blend q512 and the homopolymer 
q~a were varied 
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